Sirona Dental CAD/CAM System
inCoris TZI C

Translucent pre-dyed zirconia ceramic blocks for inLab and CEREC
Processing Instructions: Restoration production for crowns and bridges
Table of contents

1. General ... 3
2. Material .. 4
3. Chemical composition ... 5
4. Technical data ... 6
5. Intended use, indications and preparation instructions 7
 5.1 Normal use ... 7
 5.2 Indications .. 7
 5.3 Contraindications ... 7
 5.4 General preparation instructions 7
 5.5 Preparation of premolars and molars 7
6. Creating the restoration .. 8
 6.1 Scanning, designing and milling 8
 6.2 Reworking the milled restoration 8
 6.3 Drying before sintering ... 8
 6.4 Sintering .. 9
 6.5 Additional notes: procedure after sintering 10
 6.6 Rework .. 10
 6.7 Painting and coating .. 11
7. Recommended tools and materials 12
8. Fastening instructions ... 13
9. Removal of inserted restorations and Trephination 14
10. References ... 15
 10.1 Materials science .. 15
 10.2 CEREC/ inLab .. 16
1 General

inCoris TZI C blocks consist of translucent, dyed zirconia in classical colors (A-D). They are intended for use in manufacturing individually designed fully anatomical restorations, (crowns and bridges) which can be polished or veneered after milling and sintering.

Rx only

| Rx only | CAUTION: Federal law (USA) restricts sale of this device to or on the order of a physician, dentist, or licensed practitioner. |

CAUTION: Federal law (USA) restricts sale of this device to or on the order of a physician, dentist, or licensed practitioner.
2 Material

In the case of inCoris TZI C, blocks comprised of zirconia ceramics are used.

The blocks are initially manufactured in a partially sintered state; then, enlarged by the inLab CAD/CAM system, they are individually processed to specification, and finally, densely sintered.

The aesthetic features of inCoris TZI C enable application as fully anatomical crowns and bridges.

The advantages of inCoris TZI C include:

- High strength
- Resistance to corrosion
- Good biological compatibility of the product,
- Translucency
- 10 pre-dyed classical colors (A1-A4; B2; B3; C2; C3; D3)
3 **Chemical composition**

<table>
<thead>
<tr>
<th>Component</th>
<th>inCoris TZI C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO$_2$+HfO$_2$+Y$_2$O$_3$</td>
<td>\geq 99.0%</td>
</tr>
<tr>
<td>Y$_2$O$_3$</td>
<td>5.6%*</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>\leq 0.35%</td>
</tr>
<tr>
<td>Other oxides (except Er$_2$O$_3$)</td>
<td>\leq 0.2%</td>
</tr>
</tbody>
</table>

* \sum Y$_2$O$_3$ + Er$_2$O$_3$
Technical data

The following specifications apply to material that is densely sintered in an inFire HTC / inFire HTC speed sintering furnace.

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density:</td>
<td>6.08 g cm(^{-3})</td>
</tr>
<tr>
<td>Fracture toughness (K_{IC})</td>
<td>6.4 MPa m(^{1/2})</td>
</tr>
<tr>
<td>Thermal expansion coefficient (20 - 500 °C):</td>
<td>11 (10^{-6}) K(^{-1})</td>
</tr>
<tr>
<td>Bending strength:</td>
<td>> 900 MPa</td>
</tr>
</tbody>
</table>

inCoris TZI C are available in three block sizes and 10 colors.

Block sizes

inCoris TZI C blocks are available in the following block sizes:

- mono L = 20 x 19 x 15.5 mm (LxWxH)
- medi S = 40 x 19 x 15.5 mm (LxWxH)
- maxi M = 65 x 40 x 22 mm (LxWxH)

Block colors

inCoris TZI C blocks are offered 10 classical colors (A1-A4; B2; B3; C2; C3; D3).

The mono L and medi S block sizes are available in the following colors:

- A1; A2; A3; A3,5; A4; B2; B3; C2; C3; D3

The maxi M block size is available in the following colors:

- A1, A2, A3
5 Intended use, indications and preparation instructions

5.1 Normal use

Manufacture of individually designed, fully anatomic dental restorations using Sirona CAD/CAM systems CEREC and inLab

5.2 Indications

Classic sintering
- Fully anatomically crowns and bridges in the anterior and posterior tooth region
- Bridges with max. two pontics
- Classic sintering \geq 8 units with sintering support

Speed sintering
- Fully anatomically crowns and bridges in the anterior and posterior tooth region
- Bridges with max. two pontics
- Speed sintering until \leq 7 units and without sintering support

5.3 Contraindications
- Insufficient oral hygiene
- Insufficient preparation results
- Insufficient tooth structure
- Insufficient space available

5.4 General preparation instructions
- The preparation must be performed with either a chamfer or a shoulder with rounded internal angle.
- The vertical preparation angle should be at least 3°. All transitions from the axial to the occlusal or incisal areas must be rounded off. Flat or plane surfaces are advantageous.

5.5 Preparation of premolars and molars

A simplified occlusal relief is recommended for posterior teeth to allow sufficient space for the veneer ceramic. A minimum of 1.5 mm of occlusal substance must be removed.
6 Creating the restoration

6.1 Scanning, designing and milling

Software 4.3 or higher

If you are using software 4.3 or higher, select Sirona/inCoris TZI C in the material dialog.

Details are documented in the "inLab/CEREC SW User Manual".

6.2 Reworking the milled restoration

After the milling process and prior to sintering, a diamond burr milling tool has to be used to separate the restoration.

To prevent milling residues from remaining in the fissures, the restoration can be briefly steamed off or cleaned with water and a soft toothbrush.

6.3 Drying before sintering

NOTICE

In the case of high humidity

In an environment with a high level of humidity, the restorations can absorb moisture after drying. For this reason, sintering must take place within a maximum of one hour after drying.

To avoid damage during sintering, the restoration must be dried in the drying cabinet.

- 30 minutes at 80°C (176°F) or
- 10 minutes at 150°C (302°F)

NOTICE

Risk of damaging the restoration

Drying at temperatures above 150°C (302°F) can damage the restoration.

All restorations to be sintered must be dried thoroughly first, especially for super speed sintering. Any residual moisture can cause the parts to burst.
6.4 Sintering

Restorations made from inCoris TZI C have to be sintered in dry conditions.

The sintering process should only be performed in Sirona inFire HTC/ inFire HTC speed with the pre-programmed inCoris ZI and inCoris TZI programs. As an alternative, the sintering process can be carried out in the compatible VITA Zyrcomat or Ivoclar Vivadent Sintramat high temperature furnace. In any case, the details in the manuals for the respective furnaces are to be adhered to.

The classic program for sintering with inCoris TZI C is the same as for inCoris TZI and inCoris ZI. The sintering result from furnaces other than those specified here cannot be guaranteed by Sirona:

<table>
<thead>
<tr>
<th>Heating rate °C/min</th>
<th>Holding temperature °C</th>
<th>Holding time min</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1510</td>
<td>120</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>

Since speed sintering is only permitted in inFire HTC speed furnaces with inCoris ZI and inCoris TZI materials and these programs are permanently installed in the furnace, the programs are not described here. Classic and speed sintering are carried out in the sintering tray provided with the inFire HTC speed furnace.

We recommend following the instructions below precisely because, especially in the sintering processes for occlusally very curved restorations, the correct bead layer is a decisive factor in subsequent fitting on the model:

Restoration on sintering bead layer
- Only use the sintering trays and beads intended for the respective high temperature furnaces when sintering inCoris TZI C.
- Make sure that the restorations are lying completely on the bed of beads.
- Remove beads lying interdentally with a probe, so that shrinking is unhindered.
- If several restorations are sintered at the same time, these must not touch the edge of the sintering tray or each other.

"Embedded" bridge restoration
- In order to prevent the sintering beads from sticking (e.g. interdental on the bridge pontic), the restorations must not be pressed or "embedded" into the sintering beads too hard.
Creating the restoration

Very occlusally curved bridge restorations lying on buccal restoration side

- Position crown and bridge restorations on the occlusal side of the restoration.
- Very occlusally curved bridge restorations (e.g. Spee’s curve) are always to be placed on the buccal/labial side of the restoration so that the center bend of the restoration is lying on the sintering beads.
- Use additional sintering beads to support ends of restorations which have hollow areas.

Non-supported bridge restoration (with hollow area)

- Support every restoration pontic with at least one sintering bead so that bridge restorations are adequately supported along the entire length of the restoration and do not "lie hollow".

6.5 Additional notes: procedure after sintering

In the case of yellow staining of restorations after the sintering process, the high-temperature furnace should be cleansed by performing an empty run. The details in the manuals for the respective furnaces are to be adhered to in this case.

Sintering beads that adhere are to be removed carefully.

After the sintering process, the restorations must be cooled down to room temperature before further processing.

6.6 Rework

The surface condition of ceramic materials is decisive for their bending strength. Reworking sintered restorations with milling tools, especially in the connector region, must be avoided at all costs.

Therefore make corrections to the milled restoration if possible before sintering.

However, if reworking should be necessary, comply with the following basic rules:

- Reworking in the sintered condition should be performed with a wet grinding turbine (approx. 2.5 – 3 bar) or rubber polishers (low speed) or for primary telescopes with a grinding unit using water cooling and with low grinding pressure. As an alternative it is possible to rework with soft, diamond rubber polishers and a handpiece at low speed and low pressure. The tool must be applied flat and must not "chatter."
- New diamond burrs with varied grain size should be used if possible.
- Areas that are under tension in clinical use, i.e. primarily the connectors in bridge structures, should not be ground.

The sintered restorations should also be polished prior to applying the enamel coating in order to prevent abrasion to the antagonist following potential loss of shine.

The inCoris TZI C can be polished with all standard polishing agents for zirconia ceramics. Subsequent heat treatment (depressurization fire) is not necessary.
6.7 Painting and coating

Restorations made from inCoris TZI C can be finalized using all standard paint and gloss colors for zirconia ceramics, e.g. VM9 from Vita. In this case the manufacturer's processing instructions must be observed without fail.
7 Recommended tools and materials

- Modeling wax
 - Scan wax (Sirona) (suitable for scans with the inLab scanner, not for exposures with inEos)

- Wet grinding turbines:
 - KaVo K-AIR plus (KaVo);
 - IMAGO (Steco-System-Technik GmbH & Co.KG);
 - NSK Presto Aqua (Girrbach);
 - Turbo-Jet (Acurata)

- Grinding tools for reworking with the wet grinding turbine/with handpiece
 - Diamond grinding element sets Ceramic-Line, Telescope-Line (Sirius Dental Innovations).
 - Diamond polisher for handpiece (green and orange), EVE Diacera.

- Other:
 - Suitable colored contact materials

- Preparation sets:
 - Preparation set acc. to Küpper (Hager & Meisinger, Art. No. 2560);
 - Preparation set acc. to Baltzer and Kaufmann (Hager & Meisinger, Art. No. 2531);
Fastening instructions

Restorations made from inCoris TZI C can be fastened non-adhesively with glasionomer or zinc phosphate cements, or adhesively with the self-curing PANAVIA 21 TC composite or the dual-curing PANAVIA F composite (Kuraray). Both products contain the special MDP monomer, which forms a durable chemical compound with the shot blasted surface of the restorations without having to silicatize and silanize its surface.

The use of plastic-reinforced or modified glasionomer cements is not advised, since no adequate clinical data is currently available.

Pre-treatment of the restoration before adhesive bonding:

- Sand-blast the internal surfaces of the restoration in the one-way blasting process with max. 50 µm corundum (Al₂O₃). Pressure < 2.5 bar.
- Do not touch the sandblasted surface if at all possible.

NOTICE

Observe usage information

Etching with hydrofluoric acid does not produce a retentive surface. Silanization is not required.

Please observe the information on use of the fastening materials of the corresponding manufacturers.
Removal of inserted restorations and Trephination

Removal of inserted restorations

In order to remove a fixed zirconium restoration, we recommend using a cylinder-shaped diamond tool with the maximum amount of water cooling and a speed of 120,000 rpm to separate the restoration.

Trephination

The restoration can be trephined with a coarse-grained, spherical diamond with ample irrigation and a speed of 120,000 rpm.

In this case, it is recommended that the instrument is applied in a circular motion at an angle of 45° when drilling through the framework.
References

10.1 Materials science

Kern, M.: Fracture quota lower than the "divorce rate" ZWL 04, 2004,

Luthard et al.: Comparison of various techniques for the manufacture of crown frameworks from high-performance ceramics. State of the art of the CAD/CAM supported production of full ceramic crowns from oxide ceramics. Swiss Dent, 19, 6 5-12 (1998)

10.2 CEREC®/ inLab®

Baltzer, A.; Kaufmann-Jinoian, V.: CAD/CAM in dentistry
CEREC inLab. Dental-Labor, XLIX, Volume 5 (2001)

David, A.: CEREC inLab - The CAD/CAM System with a Difference.

Quintessenz Zahntech 27, 9, 1056 -1074 (2001)

Kurbad, A.: Manufacturing In-Ceram bridge frameworks with the new
CEREC technology.
Quintessenz Zahntech 27, 5, 504 - 514 (2001)

Tsotsos, St.; Giordano, R.: CEREC inLab: Clinical Aspects, Machine and
Preparation illustrations on p. 5 accd. to Dr. Andres Baltzer, CH-
Rheinfelden

Kern, M.: Computer-aided crown and bridge technology with new

Rudolph, H., Quaas, S., Luthard, R.G.: CAD/CAM – New technologies
and developments in dentistry. DZZ 58 (2003)10